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Fig. 1. We learn neural fields that capture continuous, anisotropic Gaussian scale spaces. Given a training signal, such as an image or geometry (left), we learn
a neural field representation that allows continuous Gaussian smoothing (center). Crucially, this representation is learned self-supervised, i.e., without ever
filtering the training signal. Our scale spaces are continuous in all parameters, including arbitrary covariance matrices that allow anisotropic filtering (right).

Gaussian scale spaces are a cornerstone of signal representation and pro-
cessing, with applications in filtering, multiscale analysis, anti-aliasing, and
many more. However, obtaining such a scale space is costly and cumber-
some, in particular for continuous representations such as neural fields. We
present an efficient and lightweight method to learn the fully continuous,
anisotropic Gaussian scale space of an arbitrary signal. Based on Fourier
feature modulation and Lipschitz bounding, our approach is trained self-
supervised, i.e., training does not require any manual filtering. Our neural
Gaussian scale-space fields faithfully capture multiscale representations
across a broad range of modalities, and support a diverse set of applications.
These include images, geometry, light-stage data, texture anti-aliasing, and
multiscale optimization.
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1 INTRODUCTION
Continuous neural representations, so-called neural fields, are be-
coming ubiquitous in visual-computing research and applications
[Tewari et al. 2022; Xie et al. 2022]. At their core, they map coordi-
nates to signal values using a neural network. The generality, com-
pactness, and malleability of this continuous data structure make
them a popular choice for representing a broad variety of modali-
ties. For example, neural fields have been used to represent geome-
try [Park et al. 2019], images [Stanley 2007], radiance fields [Milden-
hall et al. 2020], flow [Park et al. 2021], reflectance [Gargan and
Neelamkavil 1998], and much more.

In its basic form, a trained neural field allows querying the origi-
nal signal value for a given coordinate. Oftentimes, however, this
functionality is not sufficient: Many important use cases require
low-pass filtered versions of the signal, arising from a custom band-
limiting kernel that might be spatially-varying and even anisotropic.
For example, a downstream application might require querying the
signal at different scales [Marr and Hildreth 1980; Starck et al. 1998],
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or a subsequent discretization stage demands careful pre-filtering
for anti-aliasing [Antoniou 2006; Greene and Heckbert 1986].

Scale-space theory [Iijima 1959; Koenderink 1984; Lindeberg 2013;
Witkin 1987] provides a principled framework for tackling this
problem. A linear scale-space representation is obtained by creating
a family of progressively Gaussian-smoothed versions of a signal.
This effectively leads to a progressive suppression of fine-scale
structures. Once this representation is created, filtering boils down
to merely querying the scale space at the required location. In this
work, we set out to develop a lightweight and efficient method to
learn a neural field that captures a fully continuous, anisotropic
Gaussian scale space in a self-supervised manner.
Obtaining such a representation is non-trivial, as naïvely exe-

cuting large-scale (anisotropic) Gaussian convolutions is highly
inefficient. The task is even more challenging in neural fields, as
they typically only allow point-wise function evaluations. Gaussian-
weighted aggregation can be achieved usingMonte Carlo estimation,
but this requires trading high computational cost against high vari-
ance. Recently, convolutions have been rather efficiently executed in
neural fields using differentiation strategies [Nsampi et al. 2023; Xu
et al. 2022]. Yet, these solutions only support either fixed small-scale
kernels and require costly repeated automatic differentiation [Xu
et al. 2022], or are limited to axis-aligned kernels and demand mul-
tiple forward passes per filter location [Nsampi et al. 2023]. Neural
fields can directly learn a continuous, isotropic scale space [Barron
et al. 2021, 2022], but typically require dense supervision across
scales. Specialized network architectures allow to learn an explicit
decomposition of the signal into different frequency bands [Fathony
et al. 2020; Lindell et al. 2022; Saragadam et al. 2022; Shekarforoush
et al. 2022], but only support a coarse, discrete set of isotropic scales.

In this work, we present a novel approach for a neural field to learn
a complete anisotropic Gaussian scale space that is applicable to arbi-
trary signals and modalities (Fig. 1). Different from previous works,
our scale spaces are fully continuous in all parameters, i.e., both in
signal coordinates and in arbitrary Gaussian covariance matrices.
This allows fine-grained, spatially-varying (pre-)filtering using only
a single forward pass. Crucially, training is self-supervised, i.e., we
do not require supervision from filtered versions of the training
signal, facilitating lightweight training and, consequently, a broad
applicability of our method.
We observe that a positional encoding in the form of Fourier

features [Hertz et al. 2021; Rahimi and Recht 2007; Tancik et al.
2020] provides a convenient means to modulate frequency content.
However, the key ingredient to allow high-quality low-pass filter-
ing of a signal is to pair this encoding with a Lipschitz-bounded
multi-layer perceptron (MLP) [Gouk et al. 2021; Miyato et al. 2018;
Szegedy et al. 2013]. We show that this regularization translates the
dampening of encoding frequencies into a Gaussian smoothing of
the signal. Training such an MLP with anisotropically modulated
Fourier features on the original training signal forces the network
to learn a Gaussian scale space, without requiring any manual filter-
ing. After training, a calibration stage maps modulation parameters
to Gaussian variance, based on ultra-lightweight, one-time Monte
Carlo estimates of Gaussian convolutions. At inference, filtered ver-
sions of the learned signal can be synthesized in a single forward
pass using arbitrary, continuous Gaussian covariance matrices.

We evaluate the accuracy and applicability of our approach on
a broad variety of tasks and modalities. This includes anisotropic
smoothing of images and geometry; (pre-)filtering of textures and
light-stage data; spatially varying filtering; and multiscale optimiza-
tion. We further analyze the interplay between Fourier features and
Lipschitz-bounded MLPs to elucidate the combined effect of the
central ingredients of our approach.

In summary, our contributions are:

• A novel approach for learning a fully continuous, anisotropic
Gaussian scale space in a general-purpose neural field repre-
sentation.

• An effective and efficient training methodology to achieve
this goal self-supervised, i.e., without the requirement to filter
the training data.

• The application and careful evaluation of our method on a
spectrum of relevant modalities and tasks.

2 RELATED WORK
Here, we review related work on classical and neural multiscale
representations (Sec. 2.1), the use of Fourier features in neural fields
(Sec. 2.2), and Lipschitz bounds in deep learning (Sec. 2.3). For a
comprehensive overview of neural fields in visual computing, we
refer to recent surveys [Tewari et al. 2022; Xie et al. 2022].

2.1 Multiscale Signal Representations
Representing a signal at multiple scales has a long history in signal
processing and visual computing, with the concept of scale spaces
[Iijima 1959; Koenderink 1984; Lindeberg 2013; Witkin 1987] at the
center of attention. Many different scale spaces can be constructed
from a signal [Dorst and Van den Boomgaard 1994; Florack et al.
1995; Weickert 1998] using a rigorous axiomatic foundation [Linde-
berg 1997]. Of special interest is the linear form, i.e., the convolution
of the signal with a family of Gaussian kernels, as it exhibits a
number of useful and well-studied properties, such as predictable
behavior after differentiation [Babaud et al. 1986].
Scale spaces are typically constructed using various flavors of

discretization. The convolution of a discrete signal with a discretized
Gaussian kernel can be executed using cubature, but comes at high
computational cost, especially in higher dimensions. Acceleration
strategies involve the discrete Fourier transform [Brigham 1988] or
exploiting the separability of Gaussians [Geusebroek et al. 2003]. In
low dimensions, pyramidal structures (MIP mapping) [Burt 1981;
Williams 1983] are even more efficient. Here, the isotropic scale
parameter, i.e., the pyramid level, is also discrete. Anisotropic filter-
ing using pyramids (RIP mapping) exists [Simoncelli and Freeman
1995], but comes at the cost of an additional coarse discretization
of filter orientation, which can be hidden using carefully designed
steerable filters [Freeman and Adelson 1991]. A different line of
work has successfully explored signal representations using a dis-
crete set of multiscale basis functions [Daubechies 1988; Guo et al.
2006; Mallat 1989]. In contrast to all these works, our approach is
fully continuous in all dimensions.
Continuous representations impose significant challenges for

multiscale techniques, and a dominant strategy for filtering is sto-
chastic multi-sampling [Barron et al. 2023; Hermosilla et al. 2018; Ma
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et al. 2022; Shocher et al. 2020; Wang et al. 2018]. Such Monte Carlo
approaches require a high number of samples to avoid objection-
able noise. Sample count can be significantly reduced by relying on
differentiation and integration properties of convolutions [Nsampi
et al. 2023]. However, learning the required integral representation
is costly, high-quality Gaussian filtering still requires a substantial
number of network evaluations, and general anisotropic filtering
requires pre-computing many kernel shapes. Our neural fields are
easy to train and allow arbitrary anisotropic Gaussian filtering using
just a single forward pass. A different strategy relies on approxi-
mating continuous filtering using a learned linear combination of
derivatives of the signal obtained via automatic differentiation [Xu
et al. 2022]. Different from our solution, this approach only supports
small filter kernels.

Pre-filtering for anti-aliasing in continuous neural representations
has recently received a lot of attention [Barron et al. 2021, 2022;
Hu et al. 2023; Nam et al. 2023]. Similar to our approach, these
solutions employ carefully crafted inductive biases that help learn a
multiscale representation. However, they rely on supervision across
scales, such as images of scene objects captured at different distances.
In contrast, our method allows to learn a full scale space from a
single-scale supervision signal, thereby significantly extending its
applicability to a broad range of signals and modalities.
Strong architectural inductive biases allow training neural net-

works with intermediate activations that represent progressively
band-limited versions of the learned signal [Fathony et al. 2020;
Lindell et al. 2022; Shekarforoush et al. 2022], with applications
in coarse-to-fine learning [Karras et al. 2018; Xiangli et al. 2022].
This leads to a discretization of scales and typically only allows
isotropic filtering with a sinc-kernel. Extending this scheme to the
anisotropic case is possible [Yang et al. 2022], but, similar to RIPmap-
ping, it requires an additional coarse discretization of filter orienta-
tion, limiting this approach to low dimensions. The discretization of
scales can be combined with neuroexplicit architectures, e.g., via spa-
tial discretization or subdivision [Saragadam et al. 2022; Takikawa
et al. 2022], and many corresponding domain-specific solutions ex-
ist [Chen et al. 2021, 2023a; Gauthier et al. 2022; Kuznetsov et al.
2021; Paz et al. 2022; Takikawa et al. 2021; Xu et al. 2021; Zhuang
et al. 2023]. Yet, none of them allows fully continuous, arbitrary,
anisotropic Gaussian filtering.

2.2 Fourier Features in Neural Fields
With early applications in time series analysis and representation
learning [Kazemi et al. 2019; Vaswani et al. 2017; Xu et al. 2019],
Fourier features [Rahimi and Recht 2007] are now a popular tool
for learning neural-field representations of signals [Mildenhall et al.
2020]. Also referred to as positional encoding, their ability to map
coordinates to latent features of different frequencies is an effective
remedy for the spectral bias of neural networks [Rahaman et al.
2019]. Tancik et al. [2020] have analyzed the properties of such an
encoding for neural fields using the neural tangent kernel [Jacot et al.
2018], and propose the use of normally distributed frequency vectors.
Many applications rely on carefully dampened Fourier features to
increase training stability [Hertz et al. 2021; Lin et al. 2021; Park et al.
2021; Yang et al. 2023], or to obtain a multiscale representation given

a multiscale supervision signal [Barron et al. 2021, 2022]. Further,
the analytical structure of Fourier features has been exploited for
alias-free image synthesis [Karras et al. 2021]. We employ dampened
Fourier features with carefully chosen frequency vectors as well,
and combine this encoding with a Lipschitz-bounded network to
obtain a Gaussian scale space.
Fourier features have been explored in different architectural

variants. Examples of this scheme include periodic activation func-
tions [Mehta et al. 2021; Sitzmann et al. 2020], Wavelet-style spatio-
spectral encodings [Wu et al. 2023], or the modulation of unstruc-
tured representations based on radial basis functions [Chen et al.
2023b]. Different from our approach, the goal of these works is to
improve single-scale reconstruction quality of complex signals.

2.3 Lipschitz Networks and Matrix Parameterizations
Neural networks with guaranteed Lipschitz bounds have numer-
ous applications, such as robustness [Cisse et al. 2017; Hein and
Andriushchenko 2017], smooth interpolation [Liu et al. 2022], and
generative modeling [Arjovsky et al. 2017]. Technically, a desired
Lipschitz constant can be enforced on the level of individual weight
matrices. Corresponding methods can be divided into two classes.

The first class of methods relies on variants of projected gradient
descent, where weight matrices are projected towards the closest
feasible solution for each optimization step [Szegedy et al. 2013].
This can be done using spectral normalization [Behrmann et al. 2019;
Gouk et al. 2021; Miyato et al. 2018; Yang et al. 2021; Yoshida and
Miyato 2017], or using more sophisticated projections [Cisse et al.
2017] relying on orthonormalization [Björck and Bowie 1971]. The
second class of methods reparameterize the weight matrices such
that an unconstrained optimization can be applied [Anil et al. 2019;
Liu et al. 2022]. Our method relies on this approach, as we observe
that it leads to controllable training dynamics, but the choice of
matrix parameterization is crucial for numerical stability.
The singular value decomposition is a convenient tool in this

context [Mathiasen et al. 2020; Zhang et al. 2018b]. As it requires a
parameterization of orthogonal matrices, ad-hoc parameterizations
for special orthogonal matrices have been considered [Arjovsky
et al. 2016; Helfrich et al. 2018; Huang et al. 2018; Jing et al. 2017].
More general solutions rely on Householder reflections [Mathiasen
et al. 2020; Mhammedi et al. 2017; Zhang et al. 2018b], but they
exhibit unfavourable properties when used within an optimization
loop. We rely on matrix exponentials [Hyland and Rätsch 2017;
Lezcano-Casado and Martınez-Rubio 2019], which have been shown
to outperform other approaches [Golinski et al. 2019]. Yet, to the
best of our knowledge, we are the first to use this set of techniques
in the context of Lipschitz-bounded neural networks.

3 PRELIMINARIES
Here, we introduce concepts relevant to our approach. We first
establish our notation for signals and fields, before reviewing tech-
nical background on Gaussian scale spaces, Fourier features, and
Lipschitz continuity.

Signals and fields. We are concerned with arbitrary continuous
signals 𝑓 ∈ R𝑑𝑖 → R𝑑𝑜 , where 𝑑𝑖 and 𝑑𝑜 are typically rather
small. This generic formulation captures many modalities in visual
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a) b) c) d)

Fig. 2. An original 2D signal 𝑓 (a) alongside samples from its Gaussian
scale space 𝑓Σ (b-d). In b), isotropic smoothing is applied, while c) and
d) demonstrate examples of anisotropic filtering. Insets show isolines of
the corresponding Gaussian kernels. We consider scale spaces that are
continuous both in signal coordinates and in full Gaussian covariance.

computing, e.g., RGB images using 𝑑𝑖 = 2, 𝑑𝑜 = 3, or signed distance
functions (SDFs) for geometry using 𝑑𝑖 = 3, 𝑑𝑜 = 1. Ultimately, we
are interested in fitting a neural field 𝐹 ∈ R𝑑𝑖 → R𝑑𝑜 to (versions
of) 𝑓 . We write continuous coordinates of signals and fields as
x ∈ R𝑑𝑖 .

Gaussian scale space. The linear (Gaussian) scale space [Iijima
1959; Koenderink 1984; Lindeberg 2013; Witkin 1987] of 𝑓 is defined
as the continuous convolution of 𝑓 with a Gaussian kernel with
positive definite covariance matrix Σ ∈ R𝑑𝑖×𝑑𝑖 :

𝑓Σ (x) ≔
1√︁

(2𝜋)𝑑𝑖 det(Σ)

∫
R𝑑𝑖

𝑓 (x − 𝝉 ) exp
(
−1
2
𝝉𝑇 Σ−1𝝉

)
d𝝉 . (1)

In such an augmented signal representation, continuously varying
Σ gives rise to differently smoothed versions of the signal (Fig. 2).
A very practical benefit of this structure is that it provides precise
control over the frequency content of a signal. Yet, obtaining a
scale-space representation is costly, as it requires executing a con-
tinuous 𝑑𝑖 -dimensional integral for each combination of x and Σ –
an operation for which, in general, no closed-form solution exists.

Fourier features. Neural networks exhibit an intrinsic spectral
bias towards “simple” solutions [Rahaman et al. 2019], which makes
it challenging for basic fully-connected architectures to learn high-
frequency content. An established remedy is to first featurize the
input coordinate x using a fixed mapping𝛾 ∈ R𝑑𝑖 → R2𝑚 , based on
sinusoids of𝑚 different frequencies [Mildenhall et al. 2020; Rahimi
and Recht 2007; Tancik et al. 2020]:

𝛾 (x) =

©­­­­­­­­­­«

𝜆1 cos
(
2𝜋a𝑇1 x

)
𝜆1 sin

(
2𝜋a𝑇1 x

)
...

𝜆𝑚 cos
(
2𝜋a𝑇𝑚x

)
𝜆𝑚 sin

(
2𝜋a𝑇𝑚x

)

ª®®®®®®®®®®¬
. (2)

In this positional encoding, a𝑖 ∈ R𝑑𝑖 are frequency vectors and
𝜆𝑖 ∈ R are weights of the corresponding Fourier feature dimensions.
Small offsets in x lead to rapid changes of 𝛾 (x) for high frequencies
a𝑖 . Therefore, feeding𝛾 (x) instead of the raw x into a neural network
effectively lifts the burden of creating high frequencies from the
network, resulting in higher-quality fits of complex signals.

Lipschitz continuity. A Lipschitz-continuous function is limited
in how fast it can change. Formally, for this class of functions, there
exists a Lipschitz bound 𝑐 ≥ 0 such that

∥ 𝑓 (x1) − 𝑓 (x2)∥𝑝 ≤ 𝑐 ∥x1 − x2∥𝑝 (3)

for all possible x1 and x2 and an arbitrary choice of 𝑝 . Intuitively,
moving a certain distance in the function’s domain is guaranteed to
result in a bounded change of function values.

If 𝑓 is implemented using a fully-connected network (MLP) with
𝑙 layers and 1-Lipschitz activation functions (e.g., ReLU), an upper
Lipschitz bound is given by [Gouk et al. 2021]

𝑐 =

𝑙∏
𝑘=1

∥𝑊𝑘 ∥𝑝 , (4)

where𝑊𝑘 is the (trainable) weight matrix of the 𝑘’th network layer.
Enforcing bounded weight-matrix norms effectively imposes a fixed,
global constraint on how rapidly 𝑓 can change.

4 METHOD
We seek to learn a neural field 𝐹 (x, Σ) that captures the full anisotropic
Gaussian scale space 𝑓Σ (x) of a signal 𝑓 , i.e., a family of Gaussian-
smoothed signals with arbitray, anisotropic covariance Σ. We con-
sider, both, coordinates x and covariance matrix Σ, continuous pa-
rameters, so that the field can be queried at any location using any
Gaussian filter. Since computing 𝑓Σ via Eq. 1 is intractable for all but
the simplest 𝑓 , we learn 𝐹 (x, Σ) self-supervised, i.e., we only rely
on the original signal 𝑓 .
To achieve this goal, we make a simple but far-reaching obser-

vation: Careful dampening of high-frequency Fourier features pro-
duces a low-pass filtered signal of high quality if the neural network
representing the signal is Lipschitz-bounded. Based on this obser-
vation, we develop a novel paradigm that leverages the combined
properties of modulated Fourier features and Lipschitz-continuous
networks (Sec. 4.1). Our approach relies on a neural architecture
with carefully designed constraints (Sec. 4.2), such that training
can be performed using supervision from raw, unfiltered signal
samples (Sec. 4.3). The emerging continuous filter parameters are
uncalibrated, since we employ an efficient method that does not
explicitly execute any Gaussian smoothing during training. There-
fore, after training, we perform a lightweight calibration to enable
precise filtering (Sec. 4.4).

4.1 Self-supervised Learning of Gaussian-smoothed
Neural Fields

We consider an established neural architecture that consists of the
composition of a positional encoding using Fourier features 𝛾 (Eq. 2)
with a multi-layer perceptron (MLP) Ψ𝜃 :

𝐹 (x) = Ψ𝜃 (𝛾 (x)) . (5)

Here, 𝜃 represents the trainable network parameters, consisting of
weight matrices𝑊𝑘 and bias vectors b𝑘 . Based on this setup, our
approach fuses two techniques that are well-known in isolation,
but, to the best of our knowledge, have not yet been systemati-
cally considered in combination: First, we employ Fourier feature
modulation, i.e., we dampen high-frequency components of the
positional encoding in Eq. 2 using custom, frequency-dependent
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Positional
Encoding

MLP Positional
Encoding

MLP

a) Basic

Positional
Encoding

d) Ours

Positional
Encoding

Lipschitz-
bounded MLP

Representative from a Family of Learned FunctionsSingle Learned FunctionTraining Signal

Lipschitz-
bounded MLP

c) Lipschitz
Bounding

b) Frequency
Modulation

Fig. 3. Four different strategies to learn a neural field 𝐹 from a signal 𝑓 . 𝐹 takes a continuous coordinate x as input, which is fed into a positional encoding 𝛾
(Eq. 2) that produces a set of Fourier features using cosine (blue curves) and sine (red curves) functions of different frequencies. The resulting features serve
as input to an MLP Ψ𝜃 that regresses 𝑓 . (a) The basic setup learns a faithful reconstruction of 𝑓 (the curves for 𝐹 and 𝑓 overlay completely), but does not
allow any smoothing. (b) Modulating the Fourier features using custom weights 𝜆𝑖 (yellow bars) tends to remove some high frequencies, but distorts the
reconstruction in an unpredictable way (orange rectangles mark incoherent spikes in 𝐹 ). (c) Employing a Lipschitz-bounded MLP Ψ𝜃 leads to smoothing, but it
requires choosing a single fixed bound for training, lacking flexibility. (d) Our approach combines Fourier feature modulation with Lipschitz bounding to
enable controllable smoothing.

weights 𝜆𝑖 [Barron et al. 2021; Hertz et al. 2021; Lin et al. 2021;
Park et al. 2021]. Second, we enforce an upper Lipschitz bound of
Ψ𝜃 [Gouk et al. 2021; Miyato et al. 2018; Szegedy et al. 2013]. We
refer to such a bounded network as Ψ𝜃 . To understand how this
construction can help learn a controllably smooth function from a
raw signal, consider four different strategies for learning a signal in
Fig. 3.

In Fig. 3a, we illustrate the basic setup of Eq. 5 without any modi-
fications, i.e., with 𝜆𝑖 = 1 ∀𝑖 and an unbounded MLP Ψ𝜃 . Unsurpris-
ingly, we observe that training 𝐹 on 𝑓 results in a faithful fit. Yet,
we do not have any handle for creating smooth network responses
here.
As a potential remedy, consider the setup in Fig. 3b, where we

dampen the higher-frequency Fourier features of 𝛾 . Consistent with
established findings in the literature [Mildenhall et al. 2020; Müller
et al. 2022; Tancik et al. 2020], we observe that fitting quality de-
grades. Yet, this happens in an unpredictable way, leading to inco-
herent high-frequency spikes in 𝐹 . This is because Ψ𝜃 – depending
on factors such as signal complexity and network capacity – can
compensate for missing input frequencies by forging a function with
high gradients w.r.t. its inputs. Fourier feature modulation can help
learn signals robustly when used progressively [Hertz et al. 2021;
Lin et al. 2021], or facilitate learning of a multiscale representation
when supervision across scales is available [Barron et al. 2021, 2022].
Yet, on its own, it is not a viable strategy for learning a smooth
function from a raw supervision signal.
We now turn to an architecture with a Lipschitz-bounded MLP

Ψ𝜃 , yet with unmodified Fourier features, depicted in Fig. 3c. We
observe that the trained 𝐹 now indeed captures a smoother version
of 𝑓 . We seem to have achieved our goal; however, the Lipschitz
bound 𝑐 needs to be fixed for training and is baked into the MLP.

While this is a useful property for robust training [Cisse et al. 2017;
Hein and Andriushchenko 2017] or smooth interpolation [Liu et al.
2022], this strategy does not provide any control over the smoothing
once the network is trained.

The above considerations motivate us to develop a new approach
that combines frequency modulation with Lipschitz bounding, as
shown in Fig. 3d. When dampening high-frequency Fourier features
in this setup, the Lipschitz-bounded Ψ𝜃 cannot compensate for the
missing frequency content, since to turn the now low-frequency
encoding into a high-frequency output, it would need to produce
large gradient magnitudes w.r.t. the positional encoding. Instead, it
is forced to learn an 𝐹 that matches the raw 𝑓 as closely as possible
given frequency and gradient constraints.This form of “parameterized
gradient limiting” through modulated Fourier features facilitates
controllable smoothing (dashed colored lines Fig. 4).
While we intuitively expect some form of smoothing, the exact

reconstruction qualities emerging from our strategy are not ob-
vious. However, examining reconstructions on a broad variety of
real-world signals and modalities, we make a surprising, yet cru-
cial empirical observation: The emerging smoothing is a remarkably
faithful approximation of Gaussian filtering. We extensively validate
this claim in Sec. 5, but consider a rigorous theoretical justification
beyond the scope of this work. In Fig. 4, we visually compare results
𝐹 obtained from our approach against the best-fitting Gaussian-
smoothed versions 𝑓Σ of 𝑓 (solid grey curves).
The insights developed above suggest an effective and efficient

procedure for learning a Gaussian scale space in a self-supervised
fashion: First, we build an architecture following Eq. 5 with carefully
sampled Fourier frequency vectors and a robustly Lipschitz-bounded
neural network (Sec. 4.2). Second, we train the architecture with
strategically dampened Fourier features using the original signal 𝑓
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Fig. 4. Given a training signal 𝑓 (bottom row), progressive dampening of
Fourier features in combination with a Lipschitz-bounded MLP allows a
neural field 𝐹 learn Gaussian-smoothed versions 𝑓Σ of 𝑓 . In the three upper
rows, differently smoothed 𝐹𝑖 (dashed colored curves) and their respective
closest 𝑓Σ𝑖 (solid grey curves) are overlayed, revealing that our solution
provides a faithful approximation of Gaussian filtering.

for supervision to learn an entire continuous anisotropic Gaussian
scale space (Sec. 4.3). Finally, we map dampening weights 𝜆𝑖 to
Gaussian covariance Σ to enable precise filtering (Sec. 4.4).

4.2 Architecture
Following the reasoning developed in the previous section, we de-
sign our neural field as

𝐹 (x, Σ̂) = Ψ𝜃

(
𝛾 (x, Σ̂)

)
, (6)

which implements two modifications to the basic setup of Eq. 5.
First, we extend the positional encoding 𝛾 to incorporate a pseudo-
covariancematrix Σ̂ as an additional parameter, as detailed in Sec. 4.2.1.
Second, we use a Lipschitz-bounded MLP Ψ𝜃 , the construction of
which is explained in Sec. 4.2.2.

We emphasize that our formulation in Eq. 6 naturally supports
spatially varying filtering, as x and Σ̂ are independent inputs to the
field.

4.2.1 Fourier Features for Filtering. We are concerned with design-
ing a variant of the positional encoding in Eq. 2 that facilitates
high-quality filtering through feature dampening.

We observe that the distribution of frequencies a𝑖 plays a crucial
role in the process. Several strategies have been explored in the
literature on neural field design. A popular approach relies on axis-
aligned frequencies [Barron et al. 2021, 2022; Mildenhall et al. 2020]
(Fig. 5a), but the lack of angular coverage does not allow arbitrary
anisotropies. Tancik et al. [2020] propose to distribute frequencies
following a normal distribution (Fig. 5b). This leads to denser cover-
age, but the uncorrelated samples introduce clusters and holes. We
find this uneven coverage problematic for highly selective dampen-
ing and opt for a strategy that involves stratification [Niederreiter
1992]. Specifically, we use a Sobol [1967] sequence and map it to the
hyperball using the method of Griepentrog et al. [2008] (Fig. 5c). We
then radially warp the samples such that radially averaged sample
density follows a zero-mean Gaussian distribution with variance
𝜎2a (Fig. 5d). We find this shifting of sample budget towards the low
frequencies a good trade-off between high-quality filtering with
small-scale and large-scale kernels.

Our positional encoding needs to support anisotropically modu-
lated Fourier features. To this end, we use a positive semi-definite
pseudo-covariancematrix Σ̂ ∈ R𝑑𝑖×𝑑𝑖 to obtain frequency-dependent

dampening factors 𝜆𝑖 of the individual components in Eq. 2 (Fig. 5e):

𝜆𝑖 (Σ̂) = exp
(
−
√︃
a𝑇
𝑖
Σ̂a𝑖

)
. (7)

Notice how Σ̂ is used without inversion here, in contrast to Σ in
Eq. 1. This is a direct consequence of the reciprocal relationship of
covariance in the primal and the Fourier domain [Brigham 1988].
Consider filtering a 2D signal with stronger horizontal than vertical
smoothing. The convolution in the primal domain requires a kernel
with higher variance in the horizontal direction, while the corre-
sponding multiplication in the Fourier domain needs to dampen
horizontal frequencies more strongly, leading to vertically elongated
covariance.
Different from very similar existing techniques for supervised

anti-aliasing based on axis-aligned frequencies [Barron et al. 2021,
2022], our dampening operates on Fourier frequencies that occupy
the entire 𝑑𝑖 -dimensional space, enabling arbitrary anisotropic fil-
tering. In Sec. 4.4, we describe how to obtain filtering results with
Gaussian covariance Σ from pseudo-covariance Σ̂.

Fig. 6. Distances (black
lines) before (top)
and after (bottom)
positional encoding.

4.2.2 Robust Lipschitz Bounding. We
require the MLP Ψ𝜃 in Eq. 6 to be
Lipschitz-bounded. Eq. 3 gives us the
freedom to use any 𝑝-norm, but we
choose 𝑝 = 2, because only this choice
retains spatially invariant bounding af-
ter adding the positional encoding. To
understand this connection, consider a
setting with a one-dimensional input co-
ordinate x. Now consider a coordinate
pair (x1, x2) and a shifted version of it
(x3, x4) (Fig. 6, top). If we applied Ψ𝜃
directly to these coordinates, the right-
hand side of Eq. 3 tells us that because
x1 and x2 have the same distance as x3
and x4, a fixed Lipschitz bound 𝑐 results
in the same smoothing, i.e., the bounding is spatially invariant.
However, our situation is different: Ψ𝜃 does not operate on raw
coordinates, but on their positional encoding 𝛾 (x), where each x is
mapped to a location on a circle (Fig. 6, bottom). Only if equidistant
coordinates remain equidistant after positional encoding, formally

∥𝛾 (x1) − 𝛾 (x2)∥𝑝
!
= ∥𝛾 (x3) − 𝛾 (x4)∥𝑝 , (8)

the property that a specific 𝑐 has the same effect across the entire
domain is maintained. Eq. 8 is only fulfilled by the isotropic 2-norm.

Following Eq. 4, choosing 𝑝 = 2 translates into an MLP Ψ𝜃 whose
weight matrices have bounded spectral norms ∥𝑊𝑘 ∥2. We pick a
Lipschitz bound of 𝑐 = 1, which can be satisfied by individually
constraining the spectral norm of each weight matrix to at most 1.
We parameterize each (arbitrarily-shaped) weight matrix using

the singular value decomposition (SVD)𝑊𝑘 = 𝑈𝑘𝑆𝑘𝑉
𝑇
𝑘
, where𝑈𝑘

and 𝑉𝑘 are orthogonal matrices, and 𝑆𝑘 is a diagonal matrix con-
taining the non-negative singular values of𝑊𝑘 . Using this decom-
position, ∥𝑊𝑘 ∥2 ≤ 1 can be achieved by constraining the trainable
parameters on the diagonal of 𝑆𝑘 using a sigmoid function. To pa-
rameterize 𝑈𝑘 and 𝑉𝑘 , we capitalize on the fact that the matrix

ACM Trans. Graph., Vol. 43, No. 4, Article 134. Publication date: July 2024.



Neural Gaussian Scale-Space Fields • 134:7

c) d) e)b)a)

D
en

si
ty

D
en

si
ty

D
en

si
ty

Fig. 5. Distribution of Fourier frequencies a (colored dots). Axis-aligned frequencies (a) cannot capture anisotropies. Uncorrelated sampling from a Gaussian
distribution (b) leads to clusters and holes, impeding filtering quality. Our approach starts with a low-discrepancy sequence (c) and warps samples radially
such that radial density follows a zero-mean Gaussian distribution (d). The grey insets in b)-d) show the radial density distributions of the respective point
sets. In e), we visualize an example of dampening the frequencies in d) with a matrix Σ̂ (an isoline of its inverse is shown). Here, point size corresponds to
dampening factors 𝜆𝑖 (Σ̂) . Our carefully distributed Fourier frequencies facilitate highly selective anisotropic filtering.

exponential of a skew-symmetric matrix results in an orthogonal
matrix [Hyland and Rätsch 2017; Lezcano-Casado and Martınez-
Rubio 2019]. Concretely, for each 𝑈𝑘 and 𝑉𝑘 , we arrange a suit-
able number of trainable parameters into skew symmetric matrices
𝐴𝑈 ,𝑘 = −𝐴𝑇

𝑈 ,𝑘
and 𝐴𝑉 ,𝑘 = −𝐴𝑇

𝑉 ,𝑘
and compute

𝑈𝑘 = exp(𝐴𝑈 ,𝑘 ) and 𝑉𝑘 = exp(𝐴𝑉 ,𝑘 ). (9)

Using this parameterization of weight matrices (Fig. 7), all trainable
parameters of Ψ𝜃 can be optimized robustly and in an unconstrained
fashion, while always resulting in a Lipschitz bound 𝑐 ≤ 1.

, ,

Fig. 7. Our parameterization for a Lipschitz-bounded𝑊𝑘 ∈ R3×3, contain-
ing nine trainable parameters {𝜃1, . . . , 𝜃9} that can be freely optimized.

Special care has to be taken in the case of 𝑑𝑜 > 1, i.e., when
Ψ𝜃 has multiple output channels. Recall that the definition of Lip-
schitz continuity in Eq. 3 relies on a norm of differences between
function values. One undesired way to more easily satisfy Eq. 3 for
𝑝 = 2 is to lower the value of the norm on the left-hand side by
producing similar function values across output channels. This is be-
cause, in expectation, Euclidean distances of point pairs on the main
diagonal ofR𝑑𝑜 are shorter than distances of point pairs in full 𝑑𝑜 -
dimensional space. In practice, we observe that, without accounting
for this effect, our models tend to decrease variance between out-
put channels, e.g., they produce washed-out colors in RGB images.
Fortunately, there is a simple remedy for this problem: We treat the
rows of the last weight matrix𝑊𝑙 in Ψ𝜃 individually. Specifically, we
replace the SVD-based parameterization of𝑊𝑙 by a simple row-wise
ℓ2-normalization. This straightforward modification eliminates all
undesired cross-channel contamination.

4.3 Training
We train our neural Gaussian scale-space fields using the loss

L = Ex,Σ̂


𝐹 (x, Σ̂) − 𝑓 (x)



2
2 . (10)

It merely requires stochastically sampling coordinates x and pseudo-
covariances Σ̂ to produce a filtered network output and comparing it
against original signal samples 𝑓 (x). We emphasize that our training
does not require 𝑓Σ, thereby completely avoiding costly manual
filtering per Eq. 1 or any approximation thereof.

As all Σ̂ need to be positive semi-definite, we sample them using
the eigendecomposition Σ̂ = 𝑄Λ𝑄𝑇 , where 𝑄,Λ ∈ R𝑑𝑖×𝑑𝑖 . Specifi-
cally, we uniformly sample an orthonormal set of eigenvectors 𝑄 ,
and log-uniformly sample corresponding non-negative eigenvalues,
arranged into the diagonal matrix Λ.
The network parameters 𝜃 are optimized using Adam [Kingma

and Ba 2015] with default parameters.

4.4 Variance Calibration
Once trained, our neural field 𝐹 (x, Σ̂) in Eq. 6 captures a scale space,
where the degree of smoothing is steered by modulation of Fourier
features via pseudo-covariance Σ̂. However, there is no guarantee
at all that a particular choice of Σ̂ results in a Gaussian-filtered
function with covariance Σ = Σ̂.

Fig. 8. Lipschitz
bounds (see text).

Importantly, we find that the relation-
ship between Σ and Σ̂ depends on the
signal 𝑓 itself. Consider two sine waves
of the same frequency but with different
amplitudes (Fig. 8). Gaussian filtering of
these signals per Eq. 1 gives two identical
smoothed signals up to the original differ-
ence in amplitude. Our approach does not
exhibit this kind of invariance. The origi-
nal low-amplitude signal has a lower Lipschitz bound (slope of the
black lines in Fig. 8) and, thus, requires more aggressive bounding
to achieve the same degree of smoothing as the high-amplitude
signal. Therefore, the same Σ̂ in Eq. 7 will have different effects
when learning scale spaces of the two waves.

Since our ultimate goal is to produce filtering results with control
over covariance that is as precise as possible, we seek to find a signal-
specific calibration function ℎ(Σ) = Σ̂ that allows us to obtain our
final Gaussian scale-space field:

𝐹 (x, Σ) = Ψ𝜃 (𝛾 (x, ℎ(Σ))) . (11)

Notice that ℎ is injected into the pipeline after training.
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Calibration. We design a lightweight calibration scheme for de-
termining ℎ that is applicable to any signal modality. First, we em-
pirically observe that the discrepancy between Σ and Σ̂ stems from
a difference in isotropic scale, while anisotropies are captured faith-
fully. Consequently, our calibration only considers matrices of the
form Σ = 𝜎2I and Σ̂ = �̂�2I, where I is the 𝑑𝑖 ×𝑑𝑖 identity matrix, and
𝜎2, �̂�2 ∈ R≥0 are variance and pseudo-variance, respectively.

We rely on computing a small number of Monte Carlo estimates of
Gaussian smoothing that serve as ground truth and can be matched
against our trained field. Specifically, we consider a set of 𝑛x = 64
random pilot coordinates x𝑖 , and a set of 𝑛𝜎2 = 16 log-uniformly
spaced variances 𝜎2

𝑗
. For each combination of x𝑖 and 𝜎2𝑗 , we compute

a Monte Carlo estimate of Gaussian smoothing based on 𝑁 = 2000
samples from 𝐹 (x, 0), i.e., our trained field without any feature
dampening (Fig. 9a):

𝐹𝑖, 𝑗 =
1
𝑁

∑︁
𝝉∼N(0,𝜎2

𝑗
I)
𝐹 (x𝑖 − 𝝉 , 0) . (12)

In addition, we consider a set of 𝑛�̂�2 = 256 log-uniformly spaced
pseudo-variances �̂�2

𝑘
and compute, for each x𝑖 (Fig. 9b),

𝐹𝑖,𝑘 = 𝐹 (x𝑖 , �̂�2𝑘 I) . (13)

For each variance 𝜎2
𝑗
, we now find the pseudo-variance �̂�2

𝑘 𝑗
that

results in the lowest error across pilot coordinates x𝑖 :

𝑘 𝑗 = argmin
𝑘

𝑛x∑︁
𝑖=1

∥𝐹𝑖, 𝑗 − 𝐹𝑖,𝑘 ∥22 . (14)

Our final task is to regress the transformation ℎ that maps variances
𝜎2
𝑗
to their corresponding pseudo-variances �̂�2

𝑘 𝑗
. We observe a strong

linear relationship (Fig. 9c), so we choose �̂�2 = ℎ(𝜎2) = 𝜇𝜎2, where
𝜇 ∈ R. Taking the logarithmic spacing of our samples into account,
we regress

𝜇 =
©­«
𝑛
𝜎2∏
𝑗=1

�̂�2
𝑘 𝑗

𝜎2
𝑗

ª®¬
1

𝑛
𝜎2

. (15)

Application to the full-covariance setting gives our final calibration:

Σ̂ = ℎ(Σ) = 𝜇Σ. (16)

a)

�

b)

�

c)

Fig. 9. Our variance calibration is based on pilot coordinates x𝑖 (red points).
(a) We use Monte Carlo samples (blue points) to estimate ground-truth
smoothing based on our field when no feature dampening is applied. (b)
We compute a sequence of differently smoothed network responses to
be matched against the ground-truth from a). (c) The obtained variance–
pseudo-variance pairs (green points) exhibit a linear relationship.

Discussion. The one-time estimations in Eq. 12 and Eq. 13 require
a total of 𝑛x × (𝑛𝜎2 × 𝑁 + 𝑛�̂�2 ) ≈ 2𝑀 forward passes through our
trained network, the total computation of which is instantaneous.
Therefore, the entire calibration procedure imposes negligible cost
compared to network training.

5 EVALUATION
We demonstrate the performance of our approach on different
modalities (Sec. 5.1) and applications (Sec. 5.2), before analyzing
individual components of our pipeline (Sec. 5.3). Our source code
and supplementary materials are available on our project page at
https://neural-gaussian-scale-space-fields.mpi-inf.mpg.de.

Implementation Details. All our signals are scaled to cover the
unit domain [−1, 1]𝑑𝑖 . Our positional encoding 𝛾 uses 1024 Fourier
features (𝑚 = 512). Networks Ψ𝜃 consist of four layers with 1024
features each, and are trained with a learning rate of 5e-4 (1e-4
for light stage data) until convergence. The variances for radial
Fourier feature warping are 𝜎2a = 2000 for images, 𝜎2a = 100 for
SDFs, 𝜎2a = 500 for light stage data, and 𝜎2a = 50 for optimization.
Eigenvalues for Σ̂ during training are log-uniformly sampled in
[10−12, 102]. We have implemented our method in PyTorch [Paszke
et al. 2017].

Baselines. We quantitatively and qualitatively compare our fil-
tering results against several baselines, while a converged Monte
Carlo estimate of Eq. 1 serves as ground truth.

BACON [Lindell et al. 2022], MINER [Saragadam et al. 2022], and
PNF [Yang et al. 2022] learn neural multiscale representations, where
intermediate network outputs constitute a discrete set of low-pass
filtered versions of the original signal. FollowingNsampi et al. [2023],
we linearly combine these intermediate outputs using coefficients
that we optimize per signal to best match the filtered ground truth.
Only PNF supports anisotropic filtering using a discretization of
orientation. MINER requires prefiltered input during training.

We further consider INSP [Xu et al. 2022], which performs signal
processing of a trained neural field via a dedicated filtering network.
Each filter kernel requires training a separate filtering network,
while our approach supports a continuous family of filter kernels.

Finally, we compare against NFC [Nsampi et al. 2023], which
allows filtering based on a learned integral field that needs to be
queried hundreds of times per output coordinate. While this method
supports continuous axis-aligned scaling of filter kernels, general
anisotropic kernels require individual optimizations, leading to a
discretization of kernels in the anisotropic setting. In contrast, our
approach handles arbitrary anisotropic Gaussian kernels and pro-
duces filtered results using a single forward pass. We obtain best
results for NFC when using piecewise linear models for 2D isotropic
filtering, and piecewise constant models in all other cases.
All methods differ in their (implicit) treatment of signal bound-

aries. To facilitate a meaningful quantitative comparison, we crop
all results such that the boundary does not influence the evaluation.
Qualitative results always show uncropped signals.

Regardless of whether we evaluate isotropic or anisotropic filter-
ing capabilities, our scale-space fields are always trained using the
complete anisotropic pipeline as described in Sec. 4.
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Table 1. Image quality of filtering with different isotropic kernels (columns) for different methods (rows). “x-cont.” and “𝜎2-cont.” indicate, whether the
method is continuous in the spatial and the kernel domain, respectively. Bold and underlined numbers denote the best and second-best method, respectively.

Method x-cont. 𝜎2-cont. 𝜎2 = 0 𝜎2 = 10−4 𝜎2 = 10−3 𝜎2 = 10−2 𝜎2 = 10−1

PSNR↑ LPIPS↓ SSIM↑ PSNR↑ LPIPS↓ SSIM↑ PSNR↑ LPIPS↓ SSIM↑ PSNR↑ LPIPS↓ SSIM↑ PSNR↑ LPIPS↓ SSIM↑

BACON ✓ ✕ 32.89 0.308 0.823 38.95 0.235 0.955 36.48 0.123 0.953 30.59 0.086 0.895 25.36 0.100 0.601
MINER ✓ ✕ 41.19 0.088 0.963 37.38 0.259 0.945 36.99 0.097 0.959 25.89 0.205 0.815 24.38 0.156 0.567
INSP ✓ ✕ 30.57 0.454 0.770 30.14 0.420 0.838 23.77 0.546 0.725 20.75 0.546 0.627 23.37 0.381 0.633
NFC ✓ ✓ 20.75 0.703 0.533 26.49 0.224 0.839 36.05 0.071 0.949 39.74 0.011 0.965 41.06 0.006 0.965
Ours ✓ ✓ 33.85 0.305 0.854 35.05 0.207 0.942 34.74 0.077 0.954 35.06 0.023 0.949 34.99 0.020 0.878

BACON MINER INSP NFC Ours

Fig. 10. Qualitative results for isotropic image filtering. We show results (upper left triangles) next to error visualizations (lower right triangles). Our
supplementary materials contain more visual comparisons.
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Table 2. Image quality for methods that support anisotropic kernels. Refer
to to the caption Tab. 1 for details on individual columns and highlighting.

x-cont. Σ-cont. PSNR↑ LPIPS↓ SSIM↑
PNF ✓ ✕ 24.15 0.571 0.704
NFC ✓ ✕ 30.31 0.094 0.857
Ours ✓ ✓ 34.82 0.069 0.940

PNFKernel NFC Ours

Fig. 11. Qualitative results for anisotropic image filtering. Our supplemen-
tary materials contain more visual comparisons.

5.1 Modalities
We extensively evaluate our method on two signal modalities rele-
vant for visual computing: images and signed distance fields.

5.1.1 Images. We consider a corpus of 100 RGB images (𝑑𝑖 = 2,
𝑑𝑜 = 3) at a resolution of 2048× 2048 pixels, randomly selected from
the Adobe FiveK dataset [Bychkovsky et al. 2011] and treated as
continuous signals using bilinear interpolation. In a first step, we
investigate isotropic filtering on a set of five Gaussian kernels with
variances 𝜎2 ∈ {0, 10−4, 10−3, 10−2, 10−1}, where the first configu-
ration measures fitting quality of the original signal without any
filtering. In Tab. 1, we evaluate results using the image quality met-
rics PSNR, LPIPS [Zhang et al. 2018a], and SSIM [Wang et al. 2004].
Fig. 10 provides a corresponding qualitative comparison. We see
that our approach is highly competitive across all filter sizes. While
NFC provides the best results across all filter kernels of significant
size, it introduces severe boundary artifacts, the effect of which we
purposefully exclude in our numerical evaluations.

To evaluate performance for anisotropic filtering, we sample 100
full covariance matrices Σ using the scheme described in Sec. 4.3,
where each Σ is evaluated on all 100 test images. We report corre-
sponding results in Tab. 2 and Fig. 11 and observe that our approach
outperforms all baselines on this task.

In Fig. 12, we show spatially varying filtering for foveated render-
ing. Here, the size of the filter kernel is modulated by the distance
to a fixation point in the image. Our approach naturally supports
such spatially varying kernels, since evaluation location x and filter
covariance matrix Σ are independent inputs to our model.

Fig. 12. An original image (left) and our foveated result (right).

5.1.2 Signed Distance Fields. Encoding surfaces as the zero-level-
set of an SDF (𝑑𝑖 = 3, 𝑑𝑜 = 1) is a popular way to represent geome-
try [Park et al. 2019]. Our evaluation is based on four 3D models,
following a similar protocol as for images. In Tab. 3 and Tab. 4, we
list quantitative evaluations for isotropic and anisotropic filtering,
respectively, using MSE and intersection over union (IoU) across the
SDF, as well as the Chamfer distance of the reconstructed surfaces.
Fig. 13 and Fig. 14 show corresponding qualitative results. While
results appear mostly inconclusive for the isotropic case, we outper-
form the only other baseline that can handle anisotropic filtering in
this domain – NFC – by a large margin.

5.2 Applications
Here, we present three applications that utilize the properties of neu-
ral Gaussian scale-space fields. First, we demonstrate anti-aliasing
with texture fields, before filtering a 4D light-stage capture and
showing a proof-of-concept application in the domain of continu-
ous multiscale optimization.

5.2.1 Texture Anti-aliasing. Texturing a 3D mesh is a fundamental
building block in many rendering and reconstruction pipelines. It
requires re-sampling of a texture into screen space, which must
account for spatially-varying, anisotropic minification and magnifi-
cation to avoid aliasing [Heckbert 1986]. Our method enables this
functionality for textures that are represented as continuous neural
fields.
In Fig. 15, we show a result using a scale-space field for textur-

ing an object. We first learn the scale space of the texture in 𝑢𝑣-
coordinates, and determine the optimal anisotropic Gaussian kernel
for a given camera view that results in alias-free re-sampling [Heck-
bert 1989]. We see that our approach is successful in removing
aliasing artifacts from the rendering. The supplementary materials
contain a video that demonstrates view-coherent texturing.

5.2.2 Light Stage. A light stage allows to capture an object using
different controlled illumination conditions. A structured capture,
e.g., using one light at a time, thus enables high-quality relighting
using arbitrary environment maps in a post-process.

We apply our method to the 4D product space of 2D pixel coordi-
nates and 2D spherical light directions. As demonstrated in Fig. 16,
sampling a single light direction from our model at the finest scale
produces hard shadows, while moving to coarser scales in light
direction introduces soft shadows.

5.2.3 Multiscale Optimization. As a final application, we show that
our scale-space fields can be used for continuous multiscale opti-
mization. In our proof-of-concept setup, we assume that we have
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Table 3. Quality of filtered SDFs with different isotropic kernels. Refer to to the caption Tab. 1 for details on individual columns and highlighting.

Method x-cont. 𝜎2-cont. 𝜎2 = 0 𝜎2 = 10−4 𝜎2 = 10−3 𝜎2 = 10−2

MSE↓ Cham.↓ IoU↑ MSE↓ Cham.↓ IoU↑ MSE↓ Cham.↓ IoU↑ MSE↓ Cham.↓ IoU↑

BACON ✓ ✕ 2.5e-3 1.3e-3 0.99 4.0e-3 2.2e-3 0.97 8.3e-2 1.5e-2 0.84 2.6e-4 4.9e-2 0.53
MINER ✓ ✕ 1.6e-7 1.1e-3 0.98 3.3e-7 1.4e-3 0.98 4.1e-6 8.0e-3 0.92 1.8e-4 6.1e-2 0.52
INSP ✓ ✕ 1.2e-1 1.3e-3 0.99 4.3e-2 4.4e-3 0.95 3.6e-2 1.1e-2 0.88 3.1e-2 3.7e-2 0.64
NFC ✓ ✓ 3.7e-3 5.7e-3 0.89 2.5e-5 4.8e-3 0.92 1.4e-5 2.2e-3 0.97 1.0e-5 2.3e-2 0.77
Ours ✓ ✓ 8.3e-5 3.9e-3 0.94 6.0e-5 5.5e-3 0.92 6.5e-4 1.6e-2 0.83 1.1e-2 1.3e-1 0.32

BACON MINER INSP NFC Ours Reference

Fig. 13. Qualitative results for isotropic SDF filtering on a kernel with 𝜎2 = 10−3. Our supplementary materials contain more visual comparisons.

Table 4. SDF quality for methods that support anisotropic kernels. Refer
to the caption of Tab. 1 for details on individual columns and highlighting.

x-cont. Σ-cont. MSE↓ Cham.↓ IoU↑
NFC ✓ ✕ 7.1e-2 4.6e-1 0.08
Ours ✓ ✓ 2.8e-3 1.2e-1 0.42

a) b) c) d)

Fig. 14. (a) An original SDF. (b) Our smoothing of a) with an isotropic kernel,
suppressing detail. (c) Our smoothing of a) with an anisotropic kernel, where
the strength of the smoothing is weaker in the vertical direction, but strong
in all other directions, allowing anisotropic structure suppression. (d) Strong
smoothing is only applied in the vertical direction.

a) b)

Fig. 15. (a) Rendering a textured mesh is prone to aliasing artifacts. (b) Our
method learns the continuous scale space of a texture and allows spatially
varying, anisotropic pre-filtering, eliminating aliasing. Please consult our
supplementary materials for video results.

Fig. 16. Filtering of 4D light stage-data leads to a smoothing of the illumi-
nation condition. Notice how the hard shadows in the original signal (left)
are smoothed out in the filtered version (right).
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Table 5. Fitting and evaluation time as well as model size on disk for different methods. “Pref. Fit Time” measures fitting a prefiltered image/SDF whose highest
frequencies were removed by a Gaussian filter with 𝜎2 = 10−4. “#Evaluations” denotes the number of model evaluations necessary to obtain a filtered output.

Method Disk Size Image SDF

Fit Time Pref. Fit Time Eval. Time #Evaluations Fit Time Pref. Fit Time Eval. Time #Evaluations

BACON 5MB 89 s 62 s 1.6 s 1 2021 s 1538 s 6.2 s 1
PNF 7MB 2491 s 1338 s 5.7 s 1 — — — —
MINER 17MB 3 s 2 s 0.1 s 1 18 s 15 s 0.1 s 1
INSP 4MB 83 s 11 s 189.5 s 32a 270 s 255 s 575.7 s 22a

NFC 1MB —b —b 63.9 s 145-169 —b —b 505.9 s 216-343

MLP 24MB 15 s 12 s 1.8 s 1 107.6 s 75 s 7.3 s 1

Ours 24MB 74 s 36 s 1.8 s 1 1294.1 s 413 s 7.3 s 1
a Includes evaluations of derivative networks obtained using automatic differentiation.
b The method did not reach the PSNR/Chamfer distance threshold.

0

3

6

9

12

a) b)

Fig. 17. Our approach applied to a continuous optimization problem in-
volving an energy landscape with multiple local minima. (a) Performing
gradient descent starting from random initializations (white dots) is prone
to converging to the closest local minimum (red dots). (b) Our scale-space
field allows almost all initializations to converge to the global minimum.

access to the continuous energy landscape of an optimization prob-
lem. We learn this landscape using our approach, which enables
a coarse-to-fine optimization, successfully preventing the routine
from getting stuck in local minima.

We demonstrate this capability using the 2D Ackley [1987] func-
tion, which consists of a global minimum surrounded by multiple
local minima. A random initialization in the domain followed by
gradient descent is prone to converging to one of the local min-
ima (Fig. 17a). As a remedy, we first learn the continuous scale
space of the energy landscape. Then, starting from a coarse-scale
landscape, we optimize the continuous location of a point using
gradient descent based on automatic differentiation through our
field, while progressively transitioning to finer scales. We observe
that 99% of randomly initialized points converge to the global mini-
mum (Fig. 17b), while only 5% of points reach their goal with the
single-scale baseline.

5.3 Ablations
In this section, we analyze individual components of our method
using ablational studies. We use the full anisotropic image filtering

Table 6. Ablations.

Configuration PSNR↑ LPIPS↓ SSIM↑
w/o Sobol 34.07 0.072 0.930
w/o Freq. Warping 33.37 0.077 0.916

Freq. Scaling Only 20.66 0.541 0.563
w/o Lipschitz 21.37 0.216 0.634
10-Lipschitz 32.73 0.076 0.915
Spectral Norm. 29.08 0.127 0.868

ℓ1-Loss 29.73 0.081 0.884

Ours 34.82 0.069 0.940

setting (Sec. 5.1.1) for this investigation and report filtering quality
for different configurations in Tab. 6.

First, we are concerned with our Fourier feature dampening. We
consider uncorrelated random sampling of frequencies (w/o Sobol)
and removal of the frequency warping (w/o Freq. Warping). Second,
we look into the Lipschitz-related components. Specifically, we
consider the setup in Fig. 3a, wherewe learn a neural field and simply
dampen the Fourier features after training (Freq. Scaling Only),
before investigating configurations in which we plainly remove the
Lipschitz bounding (w/o Lipschitz), use a looser bound (10-Lipschitz),
or spectral normalization instead of our reparameterization scheme
(Spectral Norm.). We also train our fields using an ℓ1-loss instead of
using the ℓ2-norm in Eq. 10 (ℓ1-Loss).

We observe that our full method outperforms all alternative con-
figurations.

5.4 Timings and Model Size
In Tab. 5, we list performance statistics across different methods. We
report training times needed to achieve 30 PSNR and 0.004 Chamfer
distance on unfiltered images or SDFs, respectively. We additionally
measure the time and number of network evaluations required to
produce a filtered output. Finally, we report model sizes when stored
to disk. All experiments utilize a single NVIDIA A40 GPU.
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We observe that our method is generally on par with or faster
than BACON, PNF, INSP, and also NFC, which requires orders-of-
magnitude more network evaluations than our approach. While
MINER is faster, it is supervised on prefiltered data. A vanilla multi-
layer perceptron in the form of Eq. 5 (MLP) is also faster, but does
not produce a scale space.

5.5 Discussion
While a Gaussian filter directly dampens amplitudes of output fre-
quencies, our method dampens amplitudes of encoding frequencies
and then relies on the Lipschitz bound to carry this dampening
through to the output. We demonstrate consequences of this differ-
ence in Fig. 18. In the top row, observe that our method reduces the
amplitude of the original sine wave like a Gaussian filter. However,
the peaks of our wave are sharper, approaching a sawtooth wave
that one would obtain from just limiting the slope of the original
wave. In the spectrum, this manifests in the emergence of harmonic
frequencies. Fortunately, this effect is barely visible in more complex
signals as seen in the bottom row.

Neural networks exhibit an inductive bias against learning a high-
frequency output when only low Fourier encoding frequencies are
present [Rahaman et al. 2019]. The Lipschitz bound turns this bias
into a hard constraint. Thus, it becomes even more important to
include sufficiently high encoding frequencies, or else the unfiltered
reconstruction is inadvertently bandlimited. In addition, the Lips-
chitz bound restricts the freedom of the neural network to learn
arbitrary functions. We find increasing the network width to be an
effective countermeasure.
Neural Radiance Fields [Mildenhall et al. 2020] are a popular

application of neural fields, and combining them with our method
could enable cheap anti-aliasing. Unfortunately, they exhibit a very
high dynamic range in volumetric density, which poses a significant

Ground TruthOriginal Ours

Fig. 18. Original images (left) are smoothed by both a Gaussian filter (mid-
dle) and our method (right). The 1D plots show a diagonal slice through the
respective image. The upper-right insets depict logarithmic spectra. While
both approaches produce similar results, our method introduces slight har-
monics on simple signals like the sine wave in the top row. Best viewed
digitally and zoomed-in.

challenge for a Lipschitz-bounded network to fit. Our preliminary
experiments indicate that more work is needed to accommodate
this specific modality.
Many of the baseline methods we consider do not generate a

continuous scale space. Instead, they output a discrete set of filtered
signals, which can be linearly combined to approximate all scales
that lie in between. Our method similarly combines a finite set of
Fourier frequencies. In contrast to these baselines, however, our
combination is performed by a highly non-linear MLP, which we
observe to eliminate all traces of discretization.

6 CONCLUSION
We have introduced neural Gaussian scale-space fields, a novel
paradigm that allows to learn a scale space from raw data. Cru-
cially, we have shown that a faithful approximation of a continuous,
anisotropic scale space can be obtained without computing convolu-
tions of a signal with Gaussian kernels. Our idea relies on a careful
fusion of strategically dampened Fourier features in a positional
encoding and a Lipschitz-bounded neural network. The approach is
lightweight, efficient, and versatile, which we have demonstrated
on a range of modalities and applications.
We see plenty opportunity for future work. From a theoretical

perspective, it would be interesting (and ultimately necessary) to
obtain a deeper understanding of why dampened Fourier features
fed into a Lipschitz-bounded network result in a good approxima-
tion of Gaussian filtering. In terms of applications, we think that
our approach can potentially be a useful tool for ill-posed inverse
problems in neuro-explicit frameworks, such as inverse rendering
or surface reconstruction.

In light of recent efforts in continuous modeling of the real world,
we hope that our neural Gaussian scale-space fields contribute a
useful component to the toolbox of researchers and practitioners.

REFERENCES
David H. Ackley. 1987. A Connectionist Machine for Genetic Hillclimbing. Kluwer

Academic Publishers.
Cem Anil, James Lucas, and Roger Grosse. 2019. Sorting Out Lipschitz Function

Approximation. In International Conference on Machine Learning (ICML).
Andreas Antoniou. 2006. Digital Signal Processing. McGraw-Hill.
Martin Arjovsky, Soumith Chintala, and Léon Bottou. 2017. Wasserstein Generative

Adversarial Networks. In International Conference on Machine Learning (ICML).
Martin Arjovsky, Amar Shah, and Yoshua Bengio. 2016. Unitary Evolution Recurrent

Neural Networks. In International Conference on Machine Learning (ICML).
Jean Babaud, Andrew P. Witkin, Michel Baudin, and Richard O. Duda. 1986. Uniqueness

of the Gaussian Kernel for Scale-Space Filtering. IEEE Transactions on Pattern
Analysis and Machine Intelligence 8, 1 (1986), 26–33.

Jonathan T. Barron, Ben Mildenhall, Matthew Tancik, Peter Hedman, Ricardo Martin-
Brualla, and Pratul P. Srinivasan. 2021. Mip-NeRF: A Multiscale Representation
for Anti-Aliasing Neural Radiance Fields. In IEEE/CVF International Conference on
Computer Vision (ICCV).

Jonathan T. Barron, BenMildenhall, Dor Verbin, Pratul P. Srinivasan, and Peter Hedman.
2022. Mip-NeRF 360: Unbounded Anti-Aliased Neural Radiance Fields. In IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR).

Jonathan T. Barron, BenMildenhall, Dor Verbin, Pratul P. Srinivasan, and Peter Hedman.
2023. Zip-NeRF: Anti-Aliased Grid-Based Neural Radiance Fields. In IEEE/CVF
International Conference on Computer Vision (ICCV).

Jens Behrmann, Will Grathwohl, Ricky TQ Chen, David Duvenaud, and Jörn-Henrik
Jacobsen. 2019. Invertible Residual Networks. In International Conference on Machine
Learning (ICML).

Åke Björck and Clazett Bowie. 1971. An Iterative Algorithm for Computing the Best
Estimate of an Orthogonal Matrix. SIAM J. Numer. Anal. 8, 2 (1971), 358–364.

E. Oran Brigham. 1988. The fast Fourier transform and its applications. Prentice-Hall.
Peter J. Burt. 1981. Fast filter transform for image processing. Computer Graphics and

Image Processing 16, 1 (1981), 20–51.

ACM Trans. Graph., Vol. 43, No. 4, Article 134. Publication date: July 2024.



134:14 • Felix Mujkanovic, Ntumba Elie Nsampi, Christian Theobalt, Hans-Peter Seidel, and Thomas Leimkühler

Vladimir Bychkovsky, Sylvain Paris, Eric Chan, and Frédo Durand. 2011. Learning
Photographic Global Tonal Adjustment with a Database of Input/Output Image
Pairs. In IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

Yinbo Chen, Sifei Liu, and Xiaolong Wang. 2021. Learning Continuous Image Repre-
sentation With Local Implicit Image Function. In IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR).

Yun-Chun Chen, Vladimir Kim, Noam Aigerman, and Alec Jacobson. 2023a. Neural
Progressive Meshes. In ACM SIGGRAPH Conference.

Zhang Chen, Zhong Li, Liangchen Song, Lele Chen, Jingyi Yu, Junsong Yuan, and Yi
Xu. 2023b. NeuRBF: A Neural Fields Representation with Adaptive Radial Basis
Function. In IEEE/CVF International Conference on Computer Vision (ICCV).

Moustapha Cisse, Piotr Bojanowski, Edouard Grave, Yann Dauphin, and Nicolas Usunier.
2017. Parseval Networks: Improving Robustness to Adversarial Examples. In Inter-
national Conference on Machine Learning (ICML).

Ingrid Daubechies. 1988. Orthonormal Bases of Compactly Supported Wavelets. Com-
munications on Pure and Applied Mathematics 41, 7 (1988), 909–996.

Leo Dorst and Rein Van den Boomgaard. 1994. Morphological signal processing and
the slope transform. Signal Processing 38, 1 (1994), 79–98.

Rizal Fathony, Anit Kumar Sahu, DevinWillmott, and J. Zico Kolter. 2020. Multiplicative
Filter Networks. In International Conference on Learning Representations (ICLR).

LMJ Florack, Alfons H Salden, Bart M ter Haar Romeny, Jan J Koenderink, and Max A
Viergever. 1995. Nonlinear scale-space. Image and Vision Computing 13, 4 (1995),
279–294.

William T. Freeman and Edward H. Adelson. 1991. The Design and Use of Steerable
Filters. IEEE Transactions on Pattern Analysis and Machine Intelligence 13, 9 (1991),
891–906.

David Gargan and Francis Neelamkavil. 1998. Approximating Reflectance Functions
Using Neural Networks. In Eurographics Workshop on Rendering Techniques.

Alban Gauthier, Robin Faury, Jeremy Levallois, Theo Thonat, Jean-Marc Thiery, and
Tamy Boubekeur. 2022. MIPNet: Neural Normal-to-Anisotropic-Roughness MIP
Mapping. ACM Transactions on Graphics 41, 6 (2022).

J.-M. Geusebroek, Arnold W.M. Smeulders, and Joost Van De Weijer. 2003. Fast
anisotropic Gauss filtering. IEEE Transactions on Image Processing 12, 8 (2003),
938–943.

Adam Golinski, Mario Lezcano-Casado, and Tom Rainforth. 2019. Improving Normaliz-
ing Flows via Better Orthogonal Parameterizations. In ICML Workshop on Invertible
Neural Networks and Normalizing Flows.

Henry Gouk, Eibe Frank, Bernhard Pfahringer, and Michael J. Cree. 2021. Regularisation
of neural networks by enforcing Lipschitz continuity. Machine Learning 110 (2021),
393–416.

Ned Greene and Paul S. Heckbert. 1986. Creating Raster Omnimax Images fromMultiple
Perspective Views Using the Elliptical Weighted Average Filter. IEEE Computer
Graphics and Applications 6, 6 (1986), 21–27.

Jens André Griepentrog, Wolfgang Höppner, Hans-Christoph Kaiser, and Joachim
Rehberg. 2008. A bi-Lipschitz continuous, volume preserving map from the unit
ball onto a cube. Note di Matematica 28, 1 (2008), 177–193.

Kanghui Guo, Gitta Kutyniok, and Demetrio Labate. 2006. Sparse Multidimensional
Representations using Anisotropic Dilation and Shear Operators. Wavelets and
Splines 14 (2006), 189–201.

Paul S. Heckbert. 1986. Survey of Texture Mapping. IEEE Computer Graphics and
Applications 6, 11 (1986), 56–67.

Paul S. Heckbert. 1989. Fundamentals of Texture Mapping and Image Warping. Master’s
thesis. University of California, Berkeley.

Matthias Hein and Maksym Andriushchenko. 2017. Formal Guarantees on the Ro-
bustness of a Classifier against Adversarial Manipulation. In Advances in Neural
Information Processing Systems (NeurIPS).

Kyle Helfrich, Devin Willmott, and Qiang Ye. 2018. Orthogonal Recurrent Neural
Networks with Scaled Cayley Transform. In International Conference on Machine
Learning (ICML).

PedroHermosilla, Tobias Ritschel, Pere-Pau Vázquez, Àlvar Vinacua, and Timo Ropinski.
2018. Monte Carlo convolution for learning on non-uniformly sampled point clouds.
ACM Transactions on Graphics 37, 6 (2018).

Amir Hertz, Or Perel, Raja Giryes, Olga Sorkine-Hornung, and Daniel Cohen-Or. 2021.
SAPE: Spatially-Adaptive Progressive Encoding for Neural Optimization. (2021).

Wenbo Hu, Yuling Wang, Lin Ma, Bangbang Yang, Lin Gao, Xiao Liu, and Yuewen
Ma. 2023. Tri-MipRF: Tri-Mip Representation for Efficient Anti-Aliasing Neural
Radiance Fields. In IEEE/CVF International Conference on Computer Vision (ICCV).

Lei Huang, Xianglong Liu, Bo Lang, Adams Yu, Yongliang Wang, and Bo Li. 2018.
Orthogonal Weight Normalization: Solution to Optimization Over Multiple Depen-
dent Stiefel Manifolds in Deep Neural Networks. In AAAI Conference on Artificial
Intelligence.

Stephanie Hyland and Gunnar Rätsch. 2017. Learning Unitary Operators with Help
From u(n). In AAAI Conference on Artificial Intelligence.

Taizo Iijima. 1959. Basic theory of pattern observation. Technical Group on Automata
and Automatic Control (1959), 3–32.

Arthur Jacot, Franck Gabriel, and Clément Hongler. 2018. Neural Tangent Kernel: Con-
vergence and Generalization in Neural Networks. In Advances in Neural Information
Processing Systems (NeurIPS).

Li Jing, Yichen Shen, Tena Dubcek, John Peurifoy, Scott Skirlo, Yann LeCun, Max
Tegmark, and Marin Soljačić. 2017. Tunable Efficient Unitary Neural Networks
(EUNN) and their application to RNNs. In International Conference on Machine
Learning (ICML).

Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen. 2018. Progressive Growing
of GANs for Improved Quality, Stability, and Variation. In International Conference
on Learning Representations (ICLR).

Tero Karras, Miika Aittala, Samuli Laine, Erik Härkönen, Janne Hellsten, Jaakko Lehti-
nen, and Timo Aila. 2021. Alias-Free Generative Adversarial Networks. In Advances
in Neural Information Processing Systems (NeurIPS).

Seyed Mehran Kazemi, Rishab Goel, Sepehr Eghbali, Janahan Ramanan, Jaspreet Sahota,
Sanjay Thakur, Stella Wu, Cathal Smyth, Pascal Poupart, and Marcus Brubaker. 2019.
Time2Vec: Learning a Vector Representation of Time. arXiv preprint arXiv:1907.05321
(2019).

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A Method for Stochastic Optimization.
In International Conference on Learning Representations (ICLR).

Jan J. Koenderink. 1984. The structure of images. Biological Cybernetics 50, 5 (1984),
363–370.

Alexandr Kuznetsov, Krishna Mullia, Zexiang Xu, Miloš Hašan, and Ravi Ramamoorthi.
2021. NeuMIP: Multi-Resolution Neural Materials. ACM Transactions on Graphics
40, 4 (2021).

Mario Lezcano-Casado and David Martınez-Rubio. 2019. Cheap Orthogonal Constraints
in Neural Networks: A Simple Parametrization of the Orthogonal and Unitary Group.
In International Conference on Machine Learning (ICML).

Chen-Hsuan Lin, Wei-Chiu Ma, Antonio Torralba, and Simon Lucey. 2021. BARF:
Bundle-Adjusting Neural Radiance Fields. In IEEE/CVF International Conference on
Computer Vision (ICCV).

Tony Lindeberg. 1997. On the Axiomatic Foundations of Linear Scale-Space. InGaussian
Scale-Space Theory. Springer, 75–97.

Tony Lindeberg. 2013. Scale-Space Theory in Computer Vision. Vol. 256. Springer Science
& Business Media.

David B. Lindell, Dave Van Veen, Jeong Joon Park, and GordonWetzstein. 2022. BACON:
Band-limited Coordinate Networks forMultiscale Scene Representation. In IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR).

Hsueh-Ti Derek Liu, Francis Williams, Alec Jacobson, Sanja Fidler, and Or Litany. 2022.
Learning Smooth Neural Functions via Lipschitz Regularization. In ACM SIGGRAPH
Conference.

Li Ma, Xiaoyu Li, Jing Liao, Qi Zhang, Xuan Wang, Jue Wang, and Pedro V Sander. 2022.
Deblur-NeRF: Neural Radiance Fields From Blurry Images. In IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR).

Stephane G. Mallat. 1989. A Theory for Multiresolution Signal Decomposition: The
Wavelet Representation. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence 11, 7 (1989), 674–693.

David Marr and Ellen Hildreth. 1980. Theory of Edge Detection. Proceedings of the
Royal Society of London, Biological Sciences 207, 1167 (1980), 187–217.

Alexander Mathiasen, Frederik Hvilshøj, Jakob Rødsgaard Jørgensen, Anshul Nasery,
and Davide Mottin. 2020. What if Neural Networks had SVDs?. In Advances in
Neural Information Processing Systems (NeurIPS).

Ishit Mehta, Michaël Gharbi, Connelly Barnes, Eli Shechtman, Ravi Ramamoorthi, and
Manmohan Chandraker. 2021. Modulated Periodic Activations for Generalizable
Local Functional Representations. In IEEE/CVF International Conference on Computer
Vision (ICCV).

Zakaria Mhammedi, Andrew Hellicar, Ashfaqur Rahman, and James Bailey. 2017. Effi-
cient Orthogonal Parametrisation of Recurrent Neural Networks Using Householder
Reflections. In International Conference on Machine Learning (ICML).

Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron, Ravi Ra-
mamoorthi, and Ren Ng. 2020. NeRF: Representing Scenes as Neural Radiance Fields
for View Synthesis. In ECCV.

Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and Yuichi Yoshida. 2018. Spectral
Normalization for Generative Adversarial Networks. In International Conference on
Learning Representations (ICLR).

Thomas Müller, Alex Evans, Christoph Schied, and Alexander Keller. 2022. Instant Neu-
ral Graphics Primitives with a Multiresolution Hash Encoding. ACM Transactions
on Graphics 41, 4 (2022).

Seungtae Nam, Daniel Rho, Jong Hwan Ko, and Eunbyung Park. 2023. Mip-Grid:
Anti-aliased Grid Representations for Neural Radiance Fields. In Advances in Neural
Information Processing Systems (NeurIPS).

Harald Niederreiter. 1992. Low-discrepancy point sets obtained by digital constructions
over finite fields. Czechoslovak Mathematical Journal 42, 1 (1992), 143–166.

Ntumba Elie Nsampi, Adarsh Djeacoumar, Hans-Peter Seidel, Tobias Ritschel, and
Thomas Leimkühler. 2023. Neural Field Convolutions by Repeated Differentiation.
ACM Transactions on Graphics 42, 6 (2023).

ACM Trans. Graph., Vol. 43, No. 4, Article 134. Publication date: July 2024.



Neural Gaussian Scale-Space Fields • 134:15

Jeong Joon Park, Peter Florence, Julian Straub, Richard Newcombe, and Steven Love-
grove. 2019. DeepSDF: Learning Continuous Signed Distance Functions for Shape
Representation. In IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR).

Keunhong Park, Utkarsh Sinha, Jonathan T Barron, Sofien Bouaziz, Dan B. Goldman,
Steven M. Seitz, and Ricardo Martin-Brualla. 2021. Nerfies: Deformable Neural
Radiance Fields. In IEEE/CVF International Conference on Computer Vision (ICCV).

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary
DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. 2017. Auto-
matic differentiation in PyTorch. In NeurIPS Workshop on Autodiff.

Hallison Paz, Tiago Novello, Vinicius Silva, Luiz Schirmer, Guilherme Schardong, and
Luiz Velho. 2022. Multiresolution Neural Networks for Imaging. In Conference on
Graphics, Patterns and Images (SIBGRAPI).

Nasim Rahaman, Aristide Baratin, Devansh Arpit, Felix Draxler, Min Lin, Fred Ham-
precht, Yoshua Bengio, and Aaron Courville. 2019. On the Spectral Bias of Neural
Networks. In International Conference on Machine Learning (ICML).

Ali Rahimi and Benjamin Recht. 2007. Random Features for Large-Scale Kernel Ma-
chines. In Advances in Neural Information Processing Systems (NeurIPS).

Vishwanath Saragadam, Jasper Tan, Guha Balakrishnan, Richard G. Baraniuk, and
Ashok Veeraraghavan. 2022. MINER: Multiscale Implicit Neural Representation. In
European Conference on Computer Vision (ECCV).

Shayan Shekarforoush, David Lindell, David J. Fleet, and Marcus A. Brubaker. 2022.
Residual Multiplicative Filter Networks for Multiscale Reconstruction. In Advances
in Neural Information Processing Systems (NeurIPS).

Assaf Shocher, Ben Feinstein, Niv Haim, and Michal Irani. 2020. From Discrete to
Continuous Convolution Layers. arXiv preprint arXiv:2006.11120 (2020).

Eero P. Simoncelli and William T. Freeman. 1995. The steerable pyramid: a flexible
architecture for multi-scale derivative computation. In IEEE International Conference
on Image Processing (ICIP), Vol. 3. 444–447.

Vincent Sitzmann, Julien Martel, Alexander Bergman, David Lindell, and Gordon
Wetzstein. 2020. Implicit Neural Representations with Periodic Activation Functions.
In Advances in Neural Information Processing Systems (NeurIPS).

Ilya Meerovich Sobol. 1967. On the distribution of points in a cube and the approximate
evaluation of integrals. Zhurnal Vychislitel’noi Matematiki i Matematicheskoi Fiziki
7, 4 (1967), 784–802.

Kenneth O. Stanley. 2007. Compositional Pattern Producing Networks: A Novel Ab-
straction of Development. Genetic Programming and Evolvable Machines 8 (2007),
131–162.

Jean-Luc Starck, Fionn D. Murtagh, and Albert Bijaoui. 1998. Image Processing and Data
Analysis: The Multiscale Approach. Cambridge University Press.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian
Goodfellow, and Rob Fergus. 2013. Intriguing properties of neural networks. In
International Conference on Learning Representations (ICLR).

Towaki Takikawa, Alex Evans, Jonathan Tremblay, Thomas Müller, Morgan McGuire,
Alec Jacobson, and Sanja Fidler. 2022. Variable Bitrate Neural Fields. In ACM
SIGGRAPH Conference.

Towaki Takikawa, Joey Litalien, Kangxue Yin, Karsten Kreis, Charles Loop, Derek
Nowrouzezahrai, Alec Jacobson, Morgan McGuire, and Sanja Fidler. 2021. Neural
Geometric Level of Detail: Real-time Rendering with Implicit 3D Shapes. In IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR).

MatthewTancik, Pratul P. Srinivasan, BenMildenhall, Sara Fridovich-Keil, Nithin Ragha-
van, Utkarsh Singhal, Ravi Ramamoorthi, Jonathan T. Barron, and Ren Ng. 2020.
Fourier Features Let Networks Learn High Frequency Functions in LowDimensional
Domains. In Advances in Neural Information Processing Systems (NeurIPS).

Ayush Tewari, Justus Thies, Ben Mildenhall, Pratul Srinivasan, Edgar Tretschk, Wang
Yifan, Christoph Lassner, Vincent Sitzmann, Ricardo Martin-Brualla, Stephen Lom-
bardi, et al. 2022. Advances in Neural Rendering. Computer Graphics Forum 41, 2
(2022), 703–735.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention Is All You Need. In
Advances in Neural Information Processing Systems (NeurIPS).

Shenlong Wang, Simon Suo, Wei-Chiu Ma, Andrei Pokrovsky, and Raquel Urtasun.
2018. Deep Parametric Continuous Convolutional Neural Networks. In IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR).

Zhou Wang, Alan C. Bovik, Hamid R. Sheikh, and Eero P. Simoncelli. 2004. Image
Quality Assessment: From Error Visibility to Structural Similarity. IEEE Transactions
on Image Processing 13, 4 (2004), 600–612.

Joachim Weickert. 1998. Anisotropic Diffusion in Image Processing. Teubner Stuttgart.
Lance Williams. 1983. Pyramidal Parametrics. In ACM SIGGRAPH Conference.
Andrew P. Witkin. 1987. Scale-space filtering. In Readings in Computer Vision. Elsevier,

329–332.
Zhijie Wu, Yuhe Jin, and Kwang Moo Yi. 2023. Neural Fourier Filter Bank. In IEEE/CVF

Conference on Computer Vision and Pattern Recognition (CVPR).
Yuanbo Xiangli, Linning Xu, Xingang Pan, Nanxuan Zhao, Anyi Rao, Christian Theobalt,

Bo Dai, and Dahua Lin. 2022. BungeeNeRF: Progressive Neural Radiance Field for
Extreme Multi-scale Scene Rendering. In European Conference on Computer Vision

(ECCV).
Yiheng Xie, Towaki Takikawa, Shunsuke Saito, Or Litany, Shiqin Yan, Numair Khan,

Federico Tombari, James Tompkin, Vincent Sitzmann, and Srinath Sridhar. 2022.
Neural Fields in Visual Computing and Beyond. Computer Graphics Forum 41, 2
(2022), 641–676.

Da Xu, Chuanwei Ruan, Evren Korpeoglu, Sushant Kumar, and Kannan Achan. 2019.
Self-attention with Functional Time Representation Learning. In Advances in Neural
Information Processing Systems (NeurIPS).

Dejia Xu, Peihao Wang, Yifan Jiang, Zhiwen Fan, and Zhangyang Wang. 2022. Signal
Processing for Implicit Neural Representations. In Advances in Neural Information
Processing Systems (NeurIPS).

Xingqian Xu, Zhangyang Wang, and Humphrey Shi. 2021. UltraSR: Spatial Encoding is
a Missing Key for Implicit Image Function-based Arbitrary-Scale Super-Resolution.
arXiv preprint arXiv:2103.12716 (2021).

Guandao Yang, Serge Belongie, Bharath Hariharan, and Vladlen Koltun. 2021. Geometry
Processing with Neural Fields. Advances in Neural Information Processing Systems
(NeurIPS) (2021).

Guandao Yang, Sagie Benaim, Varun Jampani, Kyle Genova, Jonathan Barron, Thomas
Funkhouser, Bharath Hariharan, and Serge Belongie. 2022. Polynomial Neural Fields
for Subband Decomposition and Manipulation. In Advances in Neural Information
Processing Systems (NeurIPS).

Jiawei Yang, Marco Pavone, and Yue Wang. 2023. FreeNeRF: Improving Few-shot
Neural Rendering with Free Frequency Regularization. In IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR).

Yuichi Yoshida and Takeru Miyato. 2017. Spectral Norm Regularization for Improving
the Generalizability of Deep Learning. arXiv preprint arXiv:1705.10941 (2017).

Jiong Zhang, Qi Lei, and Inderjit Dhillon. 2018b. Stabilizing Gradients for Deep Neural
Networks via Efficient SVD Parameterization. In International Conference on Machine
Learning (ICML).

Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. 2018a.
The Unreasonable Effectiveness of Deep Features as a Perceptual Metric. In IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR).

Yiyu Zhuang, Qi Zhang, Ying Feng, Hao Zhu, Yao Yao, Xiaoyu Li, Yan-Pei Cao, Ying
Shan, and Xun Cao. 2023. Anti-Aliased Neural Implicit Surfaces with Encoding
Level of Detail. In ACM SIGGRAPH Conference.

ACM Trans. Graph., Vol. 43, No. 4, Article 134. Publication date: July 2024.


	Abstract
	1 Introduction
	2 Related Work
	2.1 Multiscale Signal Representations
	2.2 Fourier Features in Neural Fields
	2.3 Lipschitz Networks and Matrix Parameterizations

	3 Preliminaries
	4 Method
	4.1 Self-supervised Learning of Gaussian-smoothed Neural Fields
	4.2 Architecture
	4.3 Training
	4.4 Variance Calibration

	5 Evaluation
	5.1 Modalities
	5.2 Applications
	5.3 Ablations
	5.4 Timings and Model Size
	5.5 Discussion

	6 Conclusion
	References

